34 research outputs found

    Synthetic aperture radar signal processing on the MPP

    Get PDF
    Satellite-borne Synthetic Aperture Radars (SAR) sense areas of several thousand square kilometers in seconds and transmit phase history signal data several tens of megabits per second. The Shuttle Imaging Radar-B (SIR-B) has a variable swath of 20 to 50 km and acquired data over 100 kms along track in about 13 seconds. With the simplification of separability of the reference function, the processing still requires considerable resources; high speed I/O, large memory and fast computation. Processing systems with regular hardware take hours to process one Seasat image and about one hour for a SIR-B image. Bringing this processing time closer to acquisition times requires an end-to-end system solution. For the purpose of demonstration, software was implemented on the present Massively Parallel Processor (MPP) configuration for processing Seasat and SIR-B data. The software takes advantage of the high processing speed offered by the MPP, the large Staging Buffer, and the high speed I/O between the MPP array unit and the Staging Buffer. It was found that with unoptimized Parallel Pascal code, the processing time on the MPP for a 4096 x 4096 sample subset of signal data ranges between 18 and 30.2 seconds depending on options

    Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    Get PDF
    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis

    Registration workshop report

    Get PDF
    The state-of-the-art in registration and rectification of image data for terrestrial applications is examined and recommendations for further research in these areas are made

    Motion detection in astronomical and ice floe images

    Get PDF
    Two approaches are presented for establishing correspondence between small areas in pairs of successive images for motion detection. The first one, based on local correlation, is used on a pair of successive Voyager images of the Jupiter which differ mainly in locally variable translations. This algorithm is implemented on a sequential machine (VAX 780) as well as the Massively Parallel Processor (MPP). In the case of the sequential algorithm, the pixel correspondence or match is computed on a sparse grid of points using nonoverlapping windows (typically 11 x 11) by local correlations over a predetermined search area. The displacement of the corresponding pixels in the two images is called the disparities to cubic surfaces. The disparities at points where the error between the computed values and the surface values exceeds a particular threshold are replaced by the surface values. A bilinear interpolation is then used to estimate disparities at all other pixels between the grid points. When this algorithm was applied at the red spot in the Jupiter image, the rotating velocity field of the storm was determined. The second method of motion detection is applicable to pairs of images in which corresponding areas can experience considerable translation as well as rotation

    Proceedings of the Scientific Data Compression Workshop

    Get PDF
    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms

    Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    Get PDF
    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images

    Digital computer processing of LANDSAT data for North Alabama

    Get PDF
    Computer processing procedures and programs applied to Multispectral Scanner data from LANDSAT are described. The output product produced is a level 1 land use map in conformance with a Universal Transverse Mercator projection. The region studied was a five-county area in north Alabama

    A study and evaluation of image analysis techniques applied to remotely sensed data

    Get PDF
    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented

    The Importance of User Feedback in Sustaining Trusted Repositories

    Get PDF
    The NASA Earth Observation System Data and Information System (EOSDIS) has been operating since 1994 and is serving a global user community with well-managed Earth science data in a variety of scientific disciplines. EOSDIS processes, archives and distributes data and information products resulting from spaceborne and airborne instruments as well as in situ measurements from field campaigns. The Earth Science Data and Information System (ESDIS) Project at the NASA Goddard Space Flight Center manages EOSDIS with its 12 Distributed Active Archive Centers (DAACs) located across the United States. During the entire life of EOSDIS, the ESDIS Project and the DAACs have deployed many different mechanisms for user feedback, which have proven extremely valuable to their evolution and performance in their service to user communities. Some of the inputs from our user groups have resulted in fundamental changes in the architecture, design and operations of EOSDIS, while others have provided novel ideas for incremental changes. The EOSDIS DAACs have User Working Groups (UWGs) that represent broad user communities in the Earth science disciplines served by the DAACs. The UWGs meet periodically to assess and provide feedback on dataset and service priorities. As regular users of the data and services of the DAAC and experts in the scientific disciplines, the UWG members provide valuable inputs for planning and prioritizing the services, as well as addition of new datasets, for the benefit of the community. The EOSDIS is evaluated annually through an independently administered survey of its users resulting in the American Customer Satisfaction Index (ACSI). The survey provides an ACSI score as well as free-text suggestions from users, which are also helpful in making specific system improvements. In addition, each of the DAACs has a user services group that address on-going requests for help and other comments from users. The ESDIS Project has established a mechanism through the "earthdata" website (http://earthdata.nasa.gov) for users to provide feedback of any kind and these questions/comments are routed to the appropriate individuals in the Project or the DAACs. These various forms of receiving user feedback and responding to them continue to be extremely valuable in evolving and sustaining our Earth Science repository

    The Role and Evolution of NASA's Earth Science Data Systems

    Get PDF
    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program
    corecore